3.159 \(\int \sec ^4(e+f x) (a+b \sec ^2(e+f x)) \, dx\)

Optimal. Leaf size=65 \[ \frac{(5 a+4 b) \tan ^3(e+f x)}{15 f}+\frac{(5 a+4 b) \tan (e+f x)}{5 f}+\frac{b \tan (e+f x) \sec ^4(e+f x)}{5 f} \]

[Out]

((5*a + 4*b)*Tan[e + f*x])/(5*f) + (b*Sec[e + f*x]^4*Tan[e + f*x])/(5*f) + ((5*a + 4*b)*Tan[e + f*x]^3)/(15*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0432743, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {4046, 3767} \[ \frac{(5 a+4 b) \tan ^3(e+f x)}{15 f}+\frac{(5 a+4 b) \tan (e+f x)}{5 f}+\frac{b \tan (e+f x) \sec ^4(e+f x)}{5 f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4*(a + b*Sec[e + f*x]^2),x]

[Out]

((5*a + 4*b)*Tan[e + f*x])/(5*f) + (b*Sec[e + f*x]^4*Tan[e + f*x])/(5*f) + ((5*a + 4*b)*Tan[e + f*x]^3)/(15*f)

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin{align*} \int \sec ^4(e+f x) \left (a+b \sec ^2(e+f x)\right ) \, dx &=\frac{b \sec ^4(e+f x) \tan (e+f x)}{5 f}+\frac{1}{5} (5 a+4 b) \int \sec ^4(e+f x) \, dx\\ &=\frac{b \sec ^4(e+f x) \tan (e+f x)}{5 f}-\frac{(5 a+4 b) \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (e+f x)\right )}{5 f}\\ &=\frac{(5 a+4 b) \tan (e+f x)}{5 f}+\frac{b \sec ^4(e+f x) \tan (e+f x)}{5 f}+\frac{(5 a+4 b) \tan ^3(e+f x)}{15 f}\\ \end{align*}

Mathematica [A]  time = 0.194999, size = 61, normalized size = 0.94 \[ \frac{a \left (\frac{1}{3} \tan ^3(e+f x)+\tan (e+f x)\right )}{f}+\frac{b \left (\frac{1}{5} \tan ^5(e+f x)+\frac{2}{3} \tan ^3(e+f x)+\tan (e+f x)\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4*(a + b*Sec[e + f*x]^2),x]

[Out]

(a*(Tan[e + f*x] + Tan[e + f*x]^3/3))/f + (b*(Tan[e + f*x] + (2*Tan[e + f*x]^3)/3 + Tan[e + f*x]^5/5))/f

________________________________________________________________________________________

Maple [A]  time = 0.032, size = 58, normalized size = 0.9 \begin{align*}{\frac{1}{f} \left ( -a \left ( -{\frac{2}{3}}-{\frac{ \left ( \sec \left ( fx+e \right ) \right ) ^{2}}{3}} \right ) \tan \left ( fx+e \right ) -b \left ( -{\frac{8}{15}}-{\frac{ \left ( \sec \left ( fx+e \right ) \right ) ^{4}}{5}}-{\frac{4\, \left ( \sec \left ( fx+e \right ) \right ) ^{2}}{15}} \right ) \tan \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4*(a+b*sec(f*x+e)^2),x)

[Out]

1/f*(-a*(-2/3-1/3*sec(f*x+e)^2)*tan(f*x+e)-b*(-8/15-1/5*sec(f*x+e)^4-4/15*sec(f*x+e)^2)*tan(f*x+e))

________________________________________________________________________________________

Maxima [A]  time = 1.01184, size = 58, normalized size = 0.89 \begin{align*} \frac{3 \, b \tan \left (f x + e\right )^{5} + 5 \,{\left (a + 2 \, b\right )} \tan \left (f x + e\right )^{3} + 15 \,{\left (a + b\right )} \tan \left (f x + e\right )}{15 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

1/15*(3*b*tan(f*x + e)^5 + 5*(a + 2*b)*tan(f*x + e)^3 + 15*(a + b)*tan(f*x + e))/f

________________________________________________________________________________________

Fricas [A]  time = 0.46819, size = 140, normalized size = 2.15 \begin{align*} \frac{{\left (2 \,{\left (5 \, a + 4 \, b\right )} \cos \left (f x + e\right )^{4} +{\left (5 \, a + 4 \, b\right )} \cos \left (f x + e\right )^{2} + 3 \, b\right )} \sin \left (f x + e\right )}{15 \, f \cos \left (f x + e\right )^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

1/15*(2*(5*a + 4*b)*cos(f*x + e)^4 + (5*a + 4*b)*cos(f*x + e)^2 + 3*b)*sin(f*x + e)/(f*cos(f*x + e)^5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \sec ^{2}{\left (e + f x \right )}\right ) \sec ^{4}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4*(a+b*sec(f*x+e)**2),x)

[Out]

Integral((a + b*sec(e + f*x)**2)*sec(e + f*x)**4, x)

________________________________________________________________________________________

Giac [A]  time = 1.29146, size = 84, normalized size = 1.29 \begin{align*} \frac{3 \, b \tan \left (f x + e\right )^{5} + 5 \, a \tan \left (f x + e\right )^{3} + 10 \, b \tan \left (f x + e\right )^{3} + 15 \, a \tan \left (f x + e\right ) + 15 \, b \tan \left (f x + e\right )}{15 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

1/15*(3*b*tan(f*x + e)^5 + 5*a*tan(f*x + e)^3 + 10*b*tan(f*x + e)^3 + 15*a*tan(f*x + e) + 15*b*tan(f*x + e))/f